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Abstract

A queueing system with a single server providing two stages of service
in succession is considered. Every customer receives service in the first
stage and in the sequel he decides either to proceed to the second phase
of service or to depart and to join a retrial box from where he repeats
the demand for a special second stage service after a random amount of
time and independently of the other customers in the retrial box. When
the server becomes idle he departs for a single vacation of an arbitrarily
distributed lenght. The arrival process is assumed to be Poisson and all
service times are arbitrarily distributed. For such a system the stability
conditions and the system state probabilities are investigated both in a
transient and in a steady state. Numerical results are finally obtained and
used to investigate system performance.

Keywords: Poisson arrivals, two-phase service, retrial queue, general
services, single vacation.

1 Introduction

Queueing systems in which the server provides to each customer two phases of
heterogeneous service in succession, have been proved very useful to model com-
puter networks, production lines and telecommunication systems where mes-
sages are processed in two stages by a single server. Such kind of systems have
firstly discussed by Krishna and Lee [10] and Doshi [6], while more recently,
in a series of works of Madan [13], Choi and Kim [2], Choudhury and Madan
[4], Katayama and Kobayashi [9], the previous results are extended to include
models allowing server vacations, Bernoulli feedback, N-policy, exhaustive or
gated bulk service etc. Moreover in all papers mentioned above one can find
important applications of the two phase service models to computer communica-
tion, production and manufacturing systems, central processor and multimedia
communications.
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Kumar, Vijayakumar and Arivudainambi [12] and Choudhury [3] are the
first who imposed the concept of "retrial customers” in the two phase service
models. Retrial queueing systems are characterized by the fact that an arriving
customer who finds the server unavailable does not wait in a queue but instead
he leaves the system joining the so called retrial box from where he repeats
the demand for service later. Practical use of retrial queueing systems arises
in telephone-switching systems and in telecommunication and computer net-
works. For complete surveys of past papers on such kind of models see Falin
and Templeton [7], Kulkarni and Liang [11] and Artalejo [1]. Kumar et.al. [12]
considered a two phase service system where an arriving customer who finds the
server unavailable joins the retrial box from where only the first customer can
retry for service after an arbitrarily distributed time period while in the work
of Choudhury [3] the investigated model includes Bernoulli server vacations and
linear retrial policy. We have to observe here that in both papers there is not
any ordinary queue and all "waiting” customers are placed in the retrial box.

In the work here we consider a two phase service model where now all arriving
customers are waiting in an ordinary queue to receive service in the first stage.
When a customer completes his first phase service then with probability 1 — p
he proceeds to the second phase while with probability p he leaves the system
and joins the retrial box from where he retries, after a random amount of time,
to find the server available and to complete a special second phase of service.
Moreover, when there are not on-line customers for service, the server departs
for a single vacation (update devices, maintenance, etc) of arbitrarily distributed
length. Our system can be used to model any situation with two stages of service
where in the first stage a control and a separation of the serviced units according
to some quality standards or some measure of importance must be taken place.
If a unit satisfies these quality standards then it proceeds immediately to the
second phase of service while if the quality of the unit is poor then it is removed
from the system and repeat its attempt to receive a special second service later
when the server is free from high quality units. As one understand a such kind
of situation arise often in packet transmissions, in manufacturing systems, in
central processors, in multimedia communications etc. Note here that in our
model and at any time, an ordinary and a retrial queue must be taken in to
account and so the analysis become much more complicated.

The article is organized as follows. A full description of the model is given
in section 2. The time dependent analysis of the system state probabilities is
performed in section 3 while some, very useful for the analysis, results on the
customer completion time and server busy period are given in section 4. In
section 5 the conditions for statistical equilibrium are investigated. The gener-
ating functions of the steady state probabilities are obtained in section 6 and
used to give, in section 7, some important measures of the system performance.
Numerical results are obtained finally in section 8 and used to compare system
performance under various changes of the parameters.
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2 The model

Consider a queueing system consisting of two phases of service and a single server
who follows the customer in service when he passes from the first phase to the
second. Customers arrive to the system according to a Poisson distribution
parameter ), and are placed in a single queue waiting to be served. When a
customer finishes his service in the first phase then either he goes to the second
phase with probability 1 — p, or he departs from the system with probability
p and joins a retrial box from where he retries, independently to the other
customers in the box, after an exponential time parameter «, to find the server
idle and to complete a special second phase of service. In case the customer
chooses to depart and to join the retrial box the server starts immediately to
serve in the first phase the next customer in queue (if any). Every time the
server becomes idle (no customers waiting in the ordinary queue) he departs
for a single vacation Uy which length is arbitrarily distributed with distribution
function (D.F.) Bg(z), probability density function (p.df.) bp(z) and finite
mean value by and second moment about zero 582).

Let us call P; customers the ordinary customers who are queued up and
wait to be served and P; customers those who join the retrial box. The service
times in both phases are assumed to be arbitrarily distributed with D.F. B;;(z),

p.d.f. b;j(z) and finite mean value ngj and second moment about zero 5532-) for the
P; customer in the j*» phase respectively i,7 = 1,2, (Bai(z), ba1(z), 521,591)
do not exist). Finally all random variables defined above are assumed to be
independent. The following figure explains the situation.

stage one b 1— stage two
—0 oo o e
prob. p
exp(cr)

retrial box

3 System states analysis

Let N;(t), ¢ = 1,2, be the P; customers in the system at time ¢ and denote

0 server on vacation at t,
& = (¢,7) server busy on j phase with P; customer at t,
id server idle af t,

and

g(ke,t) = P(N1(t) =0, N2(t) = kg, §; = id), _
polk1, ke, @, t)de = P(Ny(t) = k1, Na(t) = ko, £, =0,z < Uo(t)_s z + dzx),
pij(k1, k2, z, t)dz = P(N1(t) = k1, No(t) = k2, & = (4,5), = < Uj;(t) < =+ dz),
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where U;;(t), Uo(t) are the elapsed service or vacation time respectively. If
finally

Q(zﬂat) = Ek220 Q(k2! t)z;ua _—

Po(21, 22,2, %) = g, 50 Lrym0 Po(k1, k2, 2, 8) 27 1:221;

P;j(21, 29, 3,t) = Ek120 Zkzzopfj(kl’ kg, z,t)z1 252, ,7=1,2,
and denote by Q*(z2,s), Pg (21, 22,2, s), P(21, 22, %, 5) the corresponding LS-
transforms, then by connecting as usual ¢ and ¢ + dt we arrive easily, for = > 0,
at

F§ (21, 20,,8) = Py (21,22,0,5)(1 — Bo(z)) exp[—(s + A — Az )z],
FPi(z1,20,2,8) = Pji(z1,22,0,8)(1 — Bij(z)) exp[—(s + A — Az)z), (1)
and
d *
az23;:2‘Q*(22; S) +(A+8)Q%(22,5) =1+ P;(Da z3,0, S)/BD(S + ), (2)
with 85(.), B7;(.) the LS transforms of by(.), bi;(.) respectively. For the bound-
ary conditions (z = 0) we obtain in a similar way

F5(0, 22,0,5) = pz2P1*1(01 z2,0, 3)18;1(3 +A) + P5(0, 22,0,5)f1a(s + A)
+P55(0, 22,0, 5)Ba2(s + A),

P;E(zlﬂ 22,0, s) = (1 = p)Pl*l(zls 22,0, S),BI]_(S 14 — A"""1)’ (3)
P;?z(O,Zz,O, s) = CIE%Q*(ZQ, 3),
while

z1Pfy(21,22,0,8) =  pza(Py(21,22,0,8)B11(s + A — Azn) — Py (07 2,0, 3)18;1(3 +A))
+P6=(0$ 22,0, 3)(183(3 +A=2Azn)—Ba(s+ )+ Pf‘z(zls 224 D?‘s)
xﬁ;Z(s +A-— Azl) — Pj5(0, 22,0,5)B72(s + A) + Paa(21, 22,0, 5)

X B3a(s + A — Az1) — P3h(0, 22,0, 8)B50(s + X) + Az.Q* (2, 8).
O]
Substituting finally from (1), (3) to (4) we arrive at

Az1Q%(z3,8)+ B3, (s+A—Az1) dgg Q" (=2,8)— Py (0,22,0,8)[14+ 85 (s+2)— B (s+2—Xz1))
z1—B11 (s+A=2z1)[pz2+(1-p) By (s + A=Az )] ( ) '
5

To proceed further we need the following Lemma the proof of which is a
simple application of the well known theorem of Takacs [15].

Pfl(zl? z2,0, 5) =

Lemma 1 For (i) |z| < 1, Re(s) > 0, or (i) |z=| < 1, Re(s) > 0, or (iii)
|22 <1, Re(s) > 0 and p; = A(b11 + (1 — p)b12) > 1, the relation

z1 = B11(s + A = Az1)[pze + (1 — p)Bia(s + A — Az1)), (6)

has one and only one root, z1 = (s, 22) say, inside the region |z1| < 1. Specifi-
cally for s = 0 and z; = 1, z(0,1) is the smallest positive real root of (6) with
z(0,1) <1ifp; >1 and z(0,1) =1 for p, < 1.
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Replacing now the zero of the denominator in the numerator in (5) we arrive
at

Az(s, 22)Q" (22, 8) + aBsy(s + A — Az(s, 22)) 7= Q* (22, 5)
1+ B(s + ) = Bo(s + A — Az(s, 22))

PE(Ds 52,0, S) = 3 (7)

and substituting in (2) we obtain

ez — Dafe, zz))d;jz@*(zz, $)+ (s + A= ADy(5,2))Q% (e, 8) =1, (8)

with B3 (42083, (s-£A=Ax(s,22)
s s+A—Az(s,=z
D2(31 272) = 1+§a(3+A)f’ﬁ5(ﬂ+)_)z(s?ﬂ))’ (9)
- (5,22) B (s+2)
Di(s, %) = mmgmmpi o)
Let us define now S
- p )
p=py+ Apboa + . (10
' Bo(A) )
Then one can show the following
Theorem 2 For (i) Re(s) > 0, or (i¢) Re(s) > 0 and p > 1, the equation
23— Da(s,22) =0, (11)

has one and only one root, z; = ¢(s) say, inside the region |z2| < 1. Specifically
for s =0, ¢(0) is the smallest positive real root of (11) with $(0) < 1ifp>1
and ¢(0) =1 for p < 1.

Proof: The proof of the theorem is completely based on the concept of the
"generalized completion time of a retrial customer” that will be investigated
in section 4. Thus comparing Da(s, z2) in the first of (9) with the function
w3 (s, z2) in (16) of section 4 one realizes easily that

oo o0
Dafem) = uj(s,m)= [ > u@)agas
0 m=0

where w) (t) is a probability density, i.e. Da(s, 22) is in fact the Laplace trans-
form of a generating function.

Thus for the closed contour |z;| = 1 and under the assumption (i) we have
always

[Da(s, z2)| < Da2(Re(s),1) < D2(0,1) = 1 = |23,

while for Re(s) > 0, we need to consider the closed contour |22] =1—¢ (e>0
a small number) in which case

|D3(s, 22)] < Da(Re(s),1 —€) < 1 — €= |2, (12)
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only if in addition

Apb d
B (;)] < o= (1_5) le=0 = -1,

or we need p > 1 for the relation (12) to hold. A final reference to Rouche’s
theorem completes the first part of the proof.

Moreover for s = 0 the convex function D5(0,23) is a monotonically in-
creasing function of 23, for 0 < 2o < 1, taking the values D3(0,0) < 1 and
D(0,1) =1 and so 0 < ¢(0) < 1if p > 1, while for p < 1, ¢(0) becomes equal
to 1 and this completes the proof. O

Using the theorem above one can solve (see Falin and Fricker [8]) the differ-
ential equation (8) and obtain

d
EE'DZ(Oa 1-— 5) ie=0= = [)\P 29 -+

1—

o 1 L
Q (S) *2) - g A AD]_(S, zz)? %f 29 = ¢(S)i
v [ 1 % 54+ A= ADy(s, z) ,
Q (3,.02) = -/.;2 G.(.DQ(S 'H. -—?1. exp{[ DZ s, -’u") —.’I:) dz }d’u, Z.f z2 7& ¢(S}

Thus the quantity @*(s, 22) is known and so from the (1), (3), (5) and (7) all
generating functions are completely known. This completes the time-dependent
analysis of the model.

4 Generalized completion time and busy period

Let us define

B = Duration of a Busy Period of Py, customers starting
with ¢ Py customers,

N(B("')) = New P, customers joining the retrial bozx during B®,

oD (#)dt = P(t < B®) < t+dt, N(BD) =m),

then it is clear that
g (s, 25) = f et E g (t) 2 dt = (s, 22),
m=0

where x(s, 23) is defined in the Lemma 1 above.

Let now C be the random interval from the epoch a P (retrial) customer
finds a position for service until the epoch the server departs for the single
vacation, and let N(C) be the number of the new customers joining the retrial
box during C. If we define e (t)dt = P(t < C < t+dt, N(C) =m) then

co(t) = e ¥ bya(t) + 152, e by (1) # g7 (2),
em(®) = D2, e bos (1) x g (1),
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where * means convolution, and after manipulations we obtain

c*(s,23) = ./:0 g Z em(t)25dt = Boo(s + A — Az (s, 22)). (13)

m=0

In a similar way if we denote by V' the random interval from the epoch the
server departs for a vacation until the epoch he is for the first time idle, and by
N(V) the number of the new customers joining the retrial box during V and
define

um(t)dt = P(t < V <t +dt, N(V) =m),
v (s,2) = [ et 00 v (t) 28 d,

then ) )
w(t) = e~ bo(t) + 1052, e B by (1) % g8 ()  vo (2),
Um(t) = T2, e M40 (1)« T 6O (1) ki (8),
and so

Bols+A)
14+ Bo(s+2) = Bo(s+ A = Az(s, 22))

Now we are ready to define the concepts of the Generalized Completion time
and Generalized busy period. Generalized completion time, W; say, of a Py
(retrial) customer is the time elapsed from the instant that this customer finds
a position for service until the instant the server is idle for the first time, while
generalized busy period, W; say, is the time interval from the epoch a P;
customer arrives in an idle system until the epoch the server is again idle. If
now we denote by N(Wa), N(W;) the number of new retrial customers joining
the retrial box in W;, Wi, respectively, and define

v*(s,29) = (14)

w$) ()dt = P(t < W; <t +dt, N(W;) = m),

K 1=1,2
] (s, 22) = f5° e~ Tomqwla (£)2dt, '
then it is clear that
wy (8, 22) = ¢*(s, 22)v* (s, 22), wi(s,22) = (s, z2)v*(s, 22), (15)

and so Bg (s4+2)B3, (s+A—Az(s,52))
5 = 8 8 —AT|(S,52
w3 (s, 22) = THBg (3 M) =B (s FA—Az(8,22))

W e =(s,52)B5 (s+X)
wi(s, 22) = 1-]—,85(a+)\)—,255(g+)\-3\z(3,:2))'

(16)

By differentiating finally with respect to 23 to the point (22 = 1,5 = 0) the
obtained in this section relations we arrive easily at

d P 2 .
—x* D— = \bB s
T Oalm= 72 =G+ (- pb)
ic*(g 20)|aym1 = —£2— o = Apbon (17)
dz2 3 Ze= 1— Pl, 2 3
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a __Po _ Apbo
d2'2v (01 22)|59’=1 - 1-— P1’ Po = ﬁ;(/\)’ (18)
and so q i
BN(Wa)) = w50, m)lm = P12, (19)
d +
BN(W1)) = g-wi(0s)lams = F0% (20)

Moreover by differentiating with respect to s to the point (23 = 1,5 = 0) we
arrive at

_ Pt
_ Pt po
E(WZ) B Ap(1— Pl)‘

5 Stability Conditions

Consider the time instants
To=0<Th <Tr < ...,

where T} is the epoch at which the server becomes idle for the ** time, and let
Ng; = No(T; +0), i = 0,1,2,..., i.e. Ny; denote the number of customers in
the retrial box just after T} . It is clear that the stochastic process {Ny; : i =
0,1,2,...} is an irreducible and aperiodic Markov chain. The following theorem
gives the condition under which this Markov chain becomes positive recurrent.
Note that using (17) and (18) the quantity p defined in (10) can be written

P=pot+p1+ po-

Theorem 3 For p < 1 the Markov chain {No; : i = 0,1,2,..} is positive
recurrent.

Proof: To prove the theorem, we will use the following criterion (see Pakes
[14]):

An trreducible and aperiodic Markov chain (Y, ; n > 0), with

state space the nonnegative integers, is positive recurrent if |6y| < oo
for all k =0,1,2,... and limsupdy < 0, where §x = E[Yp41 — Ya |

k—oo
Y, = k.
For the Markov chain of our model, let
hie,m(t)dt = Pr[t < Tny1 — Tn < t+dt, Nopny1 — Nop = m| No, = k.
Then it is easy to see that for m=0,1,2,...

him(t) = Ae~OFka)t 4y (1) 4 kae= kel 4 @) (7),
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while for m = —-1

hk,_l(f) = )‘Cﬂ.eh(A"-ko’)t * E_)‘tbzz(t) * vg(t.)
+kae~(Atka)t 4 570 E_At'gl\—i?—!bzz(t) * g(g') (t) * vo(t),

and so

= iz Awg (s z) + -’%’-w*(s z)
—st I P TR L\ z 2\
/; e E hie,m (8)2™dE = o A (22)

m==1

By taking derivatives above with respect to z at the point (z = 1,5 = 0) we
arrive at

_ AE(N(W1)) + ka[E(N (Ws)) — 1]
A+ ka :

where E(N(W)), E(N(W2)) have been found in (20) and (19) respectively.
Thus for p < 1 we realize that |dy| is finite for all k& and also limsupdy =

k—co
E(N(W2)) 1= %9_%’11 —1 < 0, and the criterion is satisfied. a
For a stochastic process (Y (t) ; ¢ > 0) we will say that it is stable, if its
limiting probabilities as t — oo exist and form a distribution. Consider now the
stochastic process

Ok

kE=4,1,...,

Z = {(N1(t), Na(t), &): 0<t < oo},
where N;(t), £, have been defined in section 3. Then

Theorem 4 For p < 1 the process Z is stable.
Proof: Consider the quantity
my = E(Ty| Noo = k).
By taking derivatives in (22) with respect to s (at z = 1, s = 0) we obtain

o _ AE(Wh) + kaB(Ws) + 1
R= X+ ka :

and if g k£ =0,1,2,..., are the steady state probabilities of the positive recur-
rent (for p < 1) Markov chain {Ng; : i =0,1,2,...} then

q-m=)_ gmi=E(Wz) + {1+ AE(W1) — E(W2)]} i 5 i’“ka. (23)
k=0 k=0

Now it is clear that there is always a finite integer k* such that

1 1
A+(k*—1)a>1> A+ k*a’
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and so

fos) k* -1
2ok 3ika = Lk=0 X%zt Y it e < Ek_o T
+Zk=k- ax = Zk_o A+ku Fell = zk=o gk) < 00,

and so from (23) using (21) we understand that q - m < oo.

Consider finally the irreducible aperiodic and positive recurrent Markov Re-
newal Process {N, T} = {(Nan, Tn.) : n=0,1,2,...}. It is easy to see that the
stochastic process Z is a Semi-Regenerative Process with imbedded Markov Re-
newal Process {N, T'} and as (for p < 1) q- m < oo it is clear that Z is, for p <
1, stable (Cinlar [5], Theorem 6.12 p.347). O

6 Steady State Probabilities

Suppose now that p < 1 and define

pO(kls ka2, E) = limg 00 pD(kln kg, z, t),
g(ke) = limy_, o0 g(ko, t),
Pij (kla kz,.’t) =lim; o0 DPij (kl, ko, z, t)a

Q(z2) = Ek2>0 ‘J(k2)"2 ’
Po(z1,22,7) = Zk1>02k2>opﬂ(khk2a$)z1 z2 1
Pij(z1,22,3) = Zklzozkzgopta(kl»k% )z1 z2 ) 4,5 =1,2.
Then it is well known that P (21, 22,z) = lim,o sP*(z1,22,%,5), Q(z2) =
lims—,0 sQ* (22, s), and so from (1) and (2) we obtain
Py(z1,22,z) = Py(21,2a,0)(1 — Bo(z)) exp[— (A — Az1)z],

Pij(z1, z2,2) = Pij(21, 22,0)(1 — Byj(z)) exp[— (A — Az1)z], (24)
and d
az - Q(z) +2Q(22) = Po(0, 22,0)55(), (25)
while the boundary conditions (3) and (4) become

Py(0, 22,0) = pz2P11(0, 22,0)871(A) + Pi2(0, 22,0)872(A) + P2a(0, 22,0)852(X),
P12(Z1, 22,0) = (1 —P)Pll(zls "‘."’210)16;1(A )""1)1
P22(01 22, 0) = W%Q(Zz):

(26)

and

Az Q(52)+aB3s (A=Az1) g5 Q(22) = Po (0,22,0) [1485 (A) = B3 (A=A=1)]
z1=B11 (A=2z1)[pz2+{1-p)B1, (3 —2z1)] '
(27)

Piiy(z1,2,0) =
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Replacing now in the numerator of (27) the zero (in |21]| < 1) z(22) = (0, 22)
of the denominator we obtain

Az(2)Q(22) + aBi(A — Mx(2)) £ Q(z)

P00 22,0) = = B — B — daten)) o
Substituting (28) to (25) we arrive easily at
oz — w30, zz))%Q(zz) +A(L— w2 (0, 2))Q(22) = 0. (29)

Let now

1 — wi(0, z3)

w(zg) = —————=
(22) 29 — w3 (0, z2)’

then for p < 1 the quantity z3 — w3(0, 22) never becomes zero in |zs| < 1

(Theorem 2) and also

PP oo
1-p

lim w(z)=-—
z3—1
Thus w(z3) is an analytic function in |23| < 1 and a continuous one on the
boundary and so for any |z2| < 1 we can solve equation (29) and obtain

11— wi(0,u)
, Wi(0,u) —u

A
Q) = QW exp{-3 | du}.
Replacing finally Q)(z2) back in the generating functions and asking for the total
probabilities to sum to unity we arrive at
1-p
Q) = ———
1+ j"”a Y
and so the generating functions of the steady state probabilities are completely
known.

The following theorem shows that the condition p < 1 is also necessary for
a stable system.

Theorem 5 If the stochastic process Z is stable then p < 1.

Proof: Suppose that Z is stable and p > 1. Then from theorem 2 the
equation 23 — w3(0, 22) = 0 has a root strictly less than one (¢(0) < 1) and so
A1 — wi(0,¢(0))) # 0. By putting now ¢(0) instead of zs in (29) we obtain

A1 —w1(0,4(0)))Q(4(0)) =0,

and so Q(4(0)) = ¥ g(7)¢”(0) = 0 with 0 < ¢(0) < 1. Thus ¢(j) =0 V j and
also from the generating functions in (24)-(28) it is clear that all probabilities
become zero. This of course contradicts to the hypothesis that the system is
stable.
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Suppose finally that Z is stable and p = 1. By taking derivatives with respect
to 2o in (29) (at 23 = 1) we arrive (for p=1) at

L 1= w(0, 22))|pm1@(1) = —AE(N(W1))Q(1) =0,

dz2
and so Q(1) = 3 q(4) = 0 and this again contradicts to the hypothesis that the
system is stable.

7 Performance measures

In this section we will use formulas for the generating functions obtained previ-
ously, to derive expressions for the probabilities of some important measures of
system performance. Thus by putting z; = 22 = 1 into relations (24)-(28) we
obtain easily

P Idle] = )= _1=p _
[server Idle] Q1) = 1+;:M
Pla Py customer in service in stage 1] = Pi1(1,1) = Aby3,

Pla Py customer in service in stage 2] = Pi2(1,1) = A(1 — p)bia,

Pla P, customer in service in stage 2] = Pag(1,1) = Apbys,
Plserver in vacation] = Po(1,1) = F?(Lj( _1.:E_.)

To obtain now the mean number of customers in the ordinary queue and in the
retrial box we have to differentiate relations (24)-(28) with respect to z; and z
respectively at the point (z1, 22) = (1,1). Thus after manipulations

A2b(2)
:

B(M1,¢ = (1,1)) = g2y +
E(Ny, €= (1,2)) = 3,32k, (2)+ X1 - p)(Buibiz + 32),
E(Ny, €= (2,2) = mézf (30)

E(Nl-:’E 0) T?_(p+ 1+"5‘blg'§)’

and
E(N2,& = (1,1)) = Kby,
E(Ny, & = (1,2)) = K(1 — p)baa,
E(Ny, € = (2,2)) = b2 D,
E(N3,£ =0) = ,3—.5—) 20044) + D),
E(Ny, § = id) =
where

App@) =
Sl p{ (p+ po) + (T—ﬂ + Apbi1 + po}s
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7(2)
@) _ 72 Ry <¢)) 72 , Pbo 1—p
p biy + (1= p)biy +2(1 — p)burbra +pbig + 5 ()\)( +P+Pu)’
*po® M(p+py) | MApbu +po)
21-p)(1-p)  a(l-p) 1-p

We have to observe here that if we send, in our model, the mean retrial rate
1/a to zero then all customers in the retrial box seem to retry continuously for
service and so they become in fact ordinary customers but now of lower priority
compared with the P, customers. Thus now the model becomes a system of
two parallel queues. All customers receive a first phase of service in the first
queue and in the sequel some of them (with probability p) join a second queue of
lower priority while the remaining customers proceed immediately to the second
phase of service. It is clear that in a such kind of model the server starts serving
in this second queue in a non preemptive basis only when there are no more
customers in the first queue.

Thus, assuming o — oo in the formulae obtained above, we arrive after
elementary manipulations at the following results for the mean number of cus-
tomers in the lower priority queue of this modified non-retrial model. Note that
the number of customers in the first (high priority) queue does not affected from
variations in a and so formulae (30) hold unaltered for the mean number of P,
customers in the modified model.

E(Ny, & = (1,1)) = Zbyy, _
E(Nz, ¢ =(L,2)) = Z(1 P)blz,

(2)
E(N2: (2 2)) = 1.Hp 2(1 21) +PO -f“Apbn),

E(N3,§=0)=£25(1-p+ 5({-:% + po + Apbu1),

B

where

_ A3PP(2) )\(po + }\pTJn )
2(1 - p)(1-p1) 1~p

8 Numerical results

In this section we use the formulae derived previously to obtain numerical results
and to investigate the way the mean number of customers in the retrial box
E(N3) is affected when we vary the values of the parameters.

To construct the tables we assumed that the vacation time Uy and the service
times follow exponential distributions with p.d.f.’s respectively,

bo(@) = e B, by(a) = Sem/Eade, i j=1,2,
bo bi;
Moreover we assume that in all tables below bjg = 0. 5, p=205.
Table 1 shows the way E(NN3) changes when we vary the mean vacation time
bo for increasing values of the mean arrival rate A. Here one can observe that
even for a small value of A, A = 0.2 for example, E{N,) increases from 0.229
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to 66.323 when we pass from a system without vacation period (50 = 0) to the
system with By = 3.9. When now the arrival rate A increases to A = 0.6 then
even a small change from by = 0 to by = 0.4 increases dramatically the mean
number of retrial customers to 1696.1. Thus we must be very careful on the
vacation period that we must allow, to avoid a rather overloaded retrial box.

2 /bo 0 0.2 0.4 0.6 0.8 1 1.3 2.2 3.9

0.2 0.229 0.2779 | 0.3353 | 0.4025 | 0.4818 | 0.5755 | 0.7503 1.718 66.323
0.3 0.5131 0.641 0.8083 | 1.0287 | 1.3243 | 1.7299 | 2.6926 | 54.231
0.4 1.1378 | 1.4866 | 2.0188 | 2.8701 | 4.3641 | 7.4778 | 38.347
0.45 1.7538 | 2.3771 | 3.4485 | 5.5148 | 10.682 | 41.261
0.5 2.8366 | 4.0762 | 6.6607 | 14.125 140.2
0.55 4.9698 | 7.9557 | 17.347 | 1248.7
0.6 10.037 | 20.887 | 1696.1
0.65 27.659 | 435.68
0.7 427.81

Table 1: Values of E(Ny) for a =0.8, by =1, byy = 0.33

Table 2 contains values of E(NNy) when we vary the mean retrial rate E(retrial) =
1/a. The first column (E(retrial) = 0) corresponds to the non-retrial model
(second queue with low priority customers). One can observe here the effect
of the retrial rate on the number of retrial customers and also one can make
conclusions on the mean retrial interval that must allowed to achieve a suitably
small size of the retrial box.

M/ E(retrial) 0 0.02 0.2 1 2 10
0.2 0.0908 | 0.0938 | 0.1207 | 0.2405 | 0.3902 1.5877
0.3 0.2739 0.2797 | 0.3264 0.5676 | 0.8613 | 3.2109
0.4 0.7905 0.8016 0.8019 1.3474 1.9043 6.3598
0.45 1.3918 1.4076 1.5495 2.18 2.9683 9.2742
0.5 2.6105 | 2.6339 2.845 3.783 4.9556 | 14.336
0.55 5.5417 | 5.5803 5.9279 7.4729 | 9.4041 24.854
0.6 15.749 | 15.831 | 16.571 | 19.859 | 23.969 | 56.851
0.65 354.17 | 355.48 | 367.22 | 419.38 | 484.58 1006.2

Table 2 : Values of E(Na) for by = 0.2, by; =1, byg = 0.33

Table 3 and Table 4 contain values of E(N2) when we vary the mean first
stage service By and the mean second stage service of retrial customers bag
respectively. One can observe again the way the mean number of retrial cus-
tomers E(Ns) increases when by; or bgs increases, particularly for large values
of A.
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A/Byy 0.7 0.8 1 1.1 1.4 1.6 1.9 2.8 4.4

0.2 0.2295 | 0.2465 | 0.2779 | 0.2987 | 0.3797 | 0.4551 | 0.6129 1.892 403.3

0.3 0.4585 | 0.5083 0.641 0.7295 | 1.1397 | 1.6206 | 3.0542 | 1700.5

0.4 0.8615 | 1.0148 | 1.4866 | 1.8565 | 4.2892 | 9.4264 | 101.65

0.45 1.1843 | 1.4536 | 2.3771 | 3.2012 | 11.155 | 58.268

0.5 1.6503 [ 2.1352 | 4.0762 | 6.1912 | 67.333

0.6 3.4947 | 5.3823 | 20.887 | 104.29

0.65 5.5195 | 10.073 | 435.68

0.75 21.845 | 1852.1

0.8 151.65

Table 3 : Values of E(Nz) for bg = 0.2, @ = 0.8, bgy = 0.33

ABaa | 0.2 0.6 0.9 12 1.7 2.2 3.9 7.2
0.2 | 0.2697 | 0.2962 | 0.3202 | 0.3487 | 0.409 | 0.4915 | 1.1084 | 105.56
0.3 | 06072 | 0.721 | 0.8369 | 0.991 | 1.3794 | 2.07 | 125
0.4 1.356 | 1.8203 | 2.4178 | 3.405 | 7.6509 | 66.169
0.45 | 2.105 | 3.1561 | 4.7433 | 8.3593 | 207.52
0.5 | 3.4511 | 6.1607 | 12.349 | 67.354
0.55 | 6.2201 | 16.151 | 404.98
0.6 | 13.469 | 678.52
0.65 | 48.304

Table 4 : Values of E(Ns) for bp = 0.2, =0.8, by; =1
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